Docosahexaenoic Acid Induces Cell Death through Downregulation of Hedgehog Signaling via Surt6 Activation in Human EGFR Mutant Non-Small Cell Lung Cancer
نویسندگان
چکیده
Omega-3 polyunsaturated fatty acids (ω3-PUFAs), including docosahexaenoic acid (DHA), have been shown to exert anticancer effects by inducing apoptotic cell death. However, the mechanism for DHA-induced cell death in lung cancer is not fully understood. Here, we show that DHA induces apoptosis in two human EGFR mutant non-small cell lung cancer (NSCLC) cell lines, and that DHA-induced cell death is accompanied by SIRT6 activation and attenuated Hedgehog (Hh) signaling. Knockdown of SIRT6 using siRNAs inhibited DHA-induced apoptosis, whereas SIRT6 overexpression increased apoptotic cell death. DHA-induced SIRT6 activation was associated with downregulation of Hh signaling, and knockdown of SIRT6 resulted in augmentation of Hh signaling. Pretreatment of NSCLC cells with a Smoothened agonist prevented DHA-induced decreases in the levels of Hh signaling proteins and increases in cleaved PARP levels. Moreover, endogenous production of ω3PUFAs in PC9 cells via fat-1 expression resulted in elevated SIRT6 levels and reduced levels of Hh signaling molecules, including Gli, following DHA treatment. Overall, these results implicate that ω3-PUFAs induce apoptosis by downregulating Hh signaling via SIRT6 activation in human EGFR mutant NSCLC cells. These findings suggest that ω3-PUFAs potentially represent an effective therapy for the chemoprevention and treatment of NSCLC.
منابع مشابه
MiR-96 induced non-small-cell lung cancer progression through competing endogenous RNA network and affecting EGFR signaling pathway
Objective(s): Non-small cell lung cancer (NSCLC) has become a serious global health problem in the 21st century, and tumor proliferation and metastasis are the leading causes of death in patients with lung cancer. The present study aimed to verify the function of miR-96 and miR-96 in relation to competing with endogenous RNA regulatory network in NSCLC progression inc...
متن کاملATM induces radioresistance of non-small cell lung cancer A549 cells by downregulation of MDMX
Background: Tumor radioresistance leads to a reduction in the efficiency of radiation therapy. It is very important to explore the cellular mechanisms leading to radioresistance and to find potential therapeutic targets, which might improve the efficacy of radiation therapy. This study was to investigate the role of ataxia-telangiectasia mutated (ATM) and murine double minute X (MDMX) in radior...
متن کاملDual effects of a CpG-DNAzyme targeting mutant EGFR transcripts in lung cancer cells: TLR9 activation and EGFR downregulation
Non-small-cell lung cancer (NSCLC) is commonly caused by a mutation in the epidermal growth factor receptor (EGFR) and subsequent aberrant EGFR signaling with uncontrolled kinase activity. A deletion mutation in EGFR exon 19 is frequently observed in EGFR gene mutations. We designed a DNAzyme to suppress the expression of mutant EGFR by cleaving the mutant EGFR mRNA. The DNAzyme (named Ex19del ...
متن کاملDocosahexaenoic Acid Induces Cell Death in Human Non-Small Cell Lung Cancer Cells by Repressing mTOR via AMPK Activation and PI3K/Akt Inhibition
The anticancer properties and mechanism of action of omega-3 polyunsaturated fatty acids (ω3-PUFAs) have been demonstrated in several cancers; however, the mechanism in lung cancer remains unclear. Here, we show that docosahexaenoic acid (DHA), a ω3-PUFA, induced apoptosis and autophagy in non-small cell lung cancer (NSCLC) cells. DHA-induced cell death was accompanied by AMP-activated protein ...
متن کاملCrosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition
Although lung cancers with activating mutations in the epidermal growth factor receptor (EGFR) are highly sensitive to selective EGFR tyrosine kinase inhibitors (TKIs), these tumors invariably develop acquired drug resistance. Host stromal cells have been found to have a considerable effect on the sensitivity of cancer cells to EGFR TKIs. Little is known, however, about the signaling mechanisms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017